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The flow of a plaue stream of ~com~~ible viscous fluid past a body is considered, 
and the velocity field far away from .the body is analyzed. Asymptotic formulas are 
derived for the vortex and the velociq field. 

The problem of the asymptotic behavior of a viscous fluid has been known for a long 
time and had attracted the attention of many researchers. Numerous works of Finn and 
his disciples are known. Filon [l. 23 had examined the plane case by using the Oseen 
approximation. He obtained a divergent integral for the moment acting on the body, 
which is known as Filon’s “paradox”. Investigations by Goldstein @. 43, Imai [S], Smith 
163, and Finn and Smfth p] followed, The subject of the present paper arose in the course 
of development of an algorithm for the numerical solutibn of the problem of flow of a 
viscous fluid past a circular cylinder. 

1, Let S be a cross section of the body and C - a smooth Jordan curve - the boundary 
of 8; the complement of 8 to the whole plane will be denoted By G. Let (t, y) be 
rectangular coordinates with origin within 8. Let 1 + u, v be dimensionless velocity 
components. p the dirne~i~l~ pressure, p the density, p = 1. We denote by w rhe 
complex velocity w = vi- itt, byorhevmex, o =i?v/&z-&/&J~ andby 
fi the Reynolds number with h =: R/z. We shall consider those solutions of the flow 
problem which satisfy conditions 

where e > 0 is an arbitrarily small quantity. We set 

10 (4 = eXxKO (W, m. (2) = fz/ r) eA’2K1 (AX), Z,*J 2) = mop) - 11 h2 

where H, (J’ = 
shown that 

0,1) is the MacDonald function. Using these conditions it can be easily 

a20 ct, - 2) & + v azo(6ay’)]dzdy 0.3) 

where II is the outward normal to &S = C and s is the length of arc along C. 
For the convolution of the two functions f and I we introduce the 

(f*Z) (Q = f*l = 

following notation 
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With this notation 

where 
w (5) = f (gf -t l/&i (d * k + ?l2,2*k*) 

k(z)=& k&)9 k*(+-g-~**w? f(C)== -&SIIo(E-2)x 
x [(alp+ iw)dz+dz] -zo*(f-li)[(2~~-io)dz+c~~~~ -!-g(C) (l.6) 

and g (6) is regular in region G. 

where d = 1 or 0. Weset 

Btiz)r:(ffo3rf+l~(r+I)-a,P*~O‘ PY, JKl= f&4 m 
The follcwing Lemmas provide an estimrre of the convo&ion J f%) , and 816 adduced 

without prcwf owifkg to SpaQG lbitation. 
Lemma 2.1. If ~rf$,u+fi>.V2, then 

J (6) < QJ G) fpy*-%,fi (f;) t 3 log p 4 &,a (611 (2.2) 

p = ] g 1 Aa,& (c) = (bg P)‘~@, hap - is the Kroneker delta. 

We set 
Q (2) = r-x+1 

Lemma 2.2. If %<p <2, aj-p>“/s, then 

J(f) < Cqt (6) fp”@ + by*,, (PI i P .J- ‘“-~~“~‘-P’(r)AtP(~)f blogpl (X3) 
Constant C depends on p and a, & 
Let 

W)==(lwr+W 1 r<g 
(2.4) 

Let us consider convolution 
J1 (f> = (4 l L) (5) 

Lemma 2.3. Inequality 

A( I;) < C {exp Iv (Ii - p)l W’fl-fi + P-%,,P 03 + ~-%,,.a (%)I + 

+ W@cr”~ (5) log P + &P-‘Aw (PH(~~~ PP (2.5) 
is valid, 

3. Letf(z) becontinuousfor I.zl>;sR and limf(z)=Owhen Iz!-+oo. 
For 1 2 1 > R function @ (r) = max 1 f(z) { is determined at 1 z 1 > r. We shall 
caII the expression 

the Power order of decrease of function f (z) and denote it by 6 =5 b tf). Assumptim 
(1.2) is written ln the form 4 (w> > Y4, We set 

k (4 - k* (z) = - L,, (2) - iL1, (4 

k (z) + k* (z) = - G(z) + J&S(~) 
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Using the asymptotic formulas for Bessel fuuctions, we obtain the estimate 

where p / h 2 6, > 0, and e, is an absolute constant, while C is a constant dependent 
on 6, only. Values elm are 

a,, = a,, = “&l a21 = 1, a12 = 2 (3.2) 

Proposition 3.1. If 6 (1.0) < 1/2, then 6 (v) > 26 (w). 
Pro o f. From (1.5) follows that 

v( 6) = Ref( 5) + %vu) + L,, + l/s l(vs - u2) * LU (3.3) 

Taking into consideration estimates (3.1) amd relationships (3.2). by Lemma 2.1 we 
have v (f) = Be f ({f j 0 (p”’ (w)+‘) (3.4) 

where E > 0 is arbitrarily small. Since Ref( 5) = o(p-if, we have from the last inequa- 

lity B(v) > 26(w), Q. E. D. 
P.roposition 3. 2. The estimate 6 (u) 2, r/a is yalid. 
Proof. By formula (1.5) 

s(b) = lmf( f;) + X(vu) * Ls, -!- IL/&v2 - @) * Lu (3.5) 

When 6(w) + 6(u) = 6(u) + 6(u) < 1, then by lemma 2, I 

1( (5) rr Im f (6) + 0 (Pl1x-s (M-s (lJ)*s + P”tS ‘“M)’ 

where e > 0 is arbitrarily small. Since B(Y) 2 26(w) > IIs, it follows from this that 
6(u) = 6(lm 0. Hence S(a) > I/%, which contradicts our assumption that 6(w) + S(b) 4 1. 
Thus, 6(u) + B(U) > 1, and by hmma 2.2 

p (E) PI Im f (0 + 0 [p-*/z P (G+t (~tl+r + P”ts (uf+* + P-‘/g- iM+t] (3% 
From this follows inequality 6(u) > r/l, Q. E. I$. 
Using the asymptotic formulas for Bessel functions, we obtain 

f (I;) St ‘ia~~~p-Wf~-P)f 0 (p-l), &jr = ~~~~~~ PdY- +) (3.7) 

The derived integral differs from (the expression for) drag by a factor only, hence it 
is not zero. A rigorous proof of this was given by Smith in @]. 

Thus 8 (u) = 8 (tu) = i/s, and setting 

t% CC) = iqp-%&E-P) 

by virtue of (3.4) and (3.8) we obtain 

r.J (E;) = 0 (P-l+r 1, zJ(G) = Im W‘,*(~~ + ~(p~*~&i~} (3.3) 

Relationship (3. 8) will be further refined by a rational application of the iteration 
process to the nonlinear equation (1.5). As the result we obtain a few of the first terms 
of asymptotics of r&differing by their order of decrease. The orders of decrease form a 
series of numbers rj2, 1, 8fs, 2, . . . In progressing through this series. terms containing 
logarithmic factors will appear in abundance in the asymptotics, 

The sum of terms whose order of decrease does not exceed (L will be denoted by ,wa 
and it will be assumed that w = w, -j-. wf”i’irf 

Proposition 3. 3. Estimate 6 (rN) > 1 is valid. 
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Proof. We set ra(l, P v(1) + it&l) 1 v + &&(I), f = f ‘/, + f Cl), f *I, - Wlf* 

Then relationship (1.5) yields 

w(l) = j(l) + ‘/sM [w;,, l (k + k’) + 2 (w,I,w”‘) * k -2 (w,,,&)) a k+ + 

+ (w(l))* * k + (w(+ l k’ ] (3.9) 

We denote the sum of the first two terms in the right-hand side of (3.9) by h(t), the 
sum of the two next following terms by jr and the sum of the last two terms by js . we 
appiy Lemma 2.3 to jz and obtain 

ir = - I, (w,,, U) * (k + k*) + J.i (wl,, v) a (k - k’) 

By virtue of (3.1). (3.2). and the first of rel&ionships (3.8) 

i1= a (%,* q+ h + 0 [(p-va+' + p-'~1-Y+').+(5;)] 
(6 W) = 7) (3.10) 

L& us assume that y < f. Similarly 

J. (U*/* v) l & = 0 [P-t+cp (C-P) + P-M c-V: (L)] (3.11) 

where 6L with 6 < 1 can be taken for p. We have 

in = - k (m&q l (k - k’) + l/a l.i [ ZJ* - (u”‘)‘] a (k + k’) 

Applying Lemma 2.2, we obtain 
jrP*h (~utl~)+ tat +O[(p-tlf'l%Y~+c + p~Ya+Y)+r)o'/r(l-4+r)(t) + P*+‘] 

Similarly 

(3.12) 

h (vu"')*~ pI f-J [p-wr)*~ + p-Yt(ltY~t~ &Ytc (C)J (3.13) 

By Lemma 2.3 
w?,, 1 (k + k’) = 0 (p- 1 dt (6)) (3.14) 

Since 8(/(r)) > 1, from the adduced estimates follows the inequality r>min[i, r/t 
(ii-r)], which contradicts the assumption of r<l. Hence, r > 1, Q. E. D. 

The results presented in the form of propositions (3.1)-(3.3) appear in the paper by 
Smith [S], but his proof differs from that given here. 

From (3.10) and (3.12) we have 

u * Re Ml) + 0 [ pJ’*+e5f’l+c (I;)] (3.15) 

Hence, if the asymptotics of convolution (3.14) is found, it becomes possible to deter- 
mine the paincipal term of the asymptotics of function u. The computation of the asymp- 
totics of such integrals is a somewhat compltcated and precise ptoceas. Here we ptesent 
only the final results. By virtue of definition of functions k and k* 

w$,*(k + k*) = mI”/, (z)* ‘lo $- ‘) + 
( 

amo(c-e) +?i-‘w??*(z)*(l;-zz)-2 ac ) 

The integrals are taken here in the meaning of the Cauchy principal value. We denote 
the first and second terms in the right-hand side (of this equation) by 111, and Jz,, , respec- 
tively. We have 

where Cl, C2 and C3 are certain constants whose exact value is unessential in this con- 
text. Prior to adducing the formula for JII, we shall make the following sripk%tiom 
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We cut plane, z,aloug the half-axis 1: > 0 (inside the trail !). 
Function (-2)” is single-valued in the slit plane, and we take that branch of the 

root which is positive for z < 0. We have 

and the series converges in the neighborhood of point z = 00. It is readily seen that, 
as long as z # 0, function 

(-a)-*+-’ -+ 

and all of its derivatives are not subject to discontinuities along the slit, 
From these expressions follows that 

Hence 

ex(x-?‘) 
x- ra,, _t 5 2 + 0 (f2ep@-r)) 

k=l 
(3.16) 

R&(l) (2) = Re al ,+ eQ+r) + + ) + 0 (r-‘1:) 

m$* 

1 

---+ 
T - ~)&w S e-W'+* dv + o(r-%) (3.17) 

Stipulating 

VI (2) = Re (a, i&+r) -j- -+ ) (3.18) 
from (3.15) and (3.17) we obtain 

V = V, (2) -/- 0 [r-% + r-‘l,+, g-‘/t+s (2)) (3.19) 
4, tit L (2) 

that of the L 
= L(l) (z) + L@Q (z} be one of the functions Lt,,, with L(l) (z) being 

(2) components which exponentially decreases outside the trail Let ~1 (z) 
satisfy inequality Iq3(4IC(j~ogr(-!- V+-so-Y(z) 

We set yi = min (y, i/s) and y2 = min (v, 1) 
tity in the interval (0,oo). We introduce functions t 

and denote by x an arbitrary quan- 

62 (6) - p-=cp, (Q [A(r)~r+‘!x (B-r.) Q% (r-is-~) (I;) + Ats+,‘/~+ (t;) + &7,p+7q-x(Q] + 

-t A(~)l~g~pp-=-'~~-~(~)+ (A(*) -i- logp)'~~(~)a-*~(tJ (4.1) 
Lemma 4.1. If 2 < @ -I- y1 < 3, then 
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Proof of this Lemma is omitted for the same reasons as given for Lemmas 2. l- 2.3. 

6. Let us determine the first order terms of the asymptotics of functton u (C;) by ex- 
tending the reasoning of Sect. 3. Using formula (3. I.9 we transform the first term in 
formula (3.11) and then apply Lemma 4.1. We have 

jt = ih(rb,V,) + &, f ihA& $- 0 [p-‘l:+@ a-*/~(t)] (5.1) 
We carry out a similar operation on ja. Then 

jti = ih (Ml)) * LzI + ihA,L2L + 0 [p-‘/4+‘ CS”~~+~ (5) + p-‘~~+C cr’~‘l+~ (t)] (5.2) 

t (f) = Re b&-l 

Subs~tu~g (5.1) and (5.2) into (3.9) and taking the imaginary part. we obtain 

u(l) = @, -t @I f‘@,,, @)o = 1x1 h(l) + h A,L, + h (tq, VI) * L, 
co, = h (td’)) *L,, (Al = A, + A,) (5.3) 

with @I,- the sum of residual terms expressed by 

a, * = 0 ~p-~i,tsg-*l~+c $ p-‘:+L~‘hti] (5.4) 
Assuming 

jl (g) = U%,*(C) ( ii1 *(r-r) + +) 

we obtain 
(q* VI) * J&I = Re (4 * &I) 

To facilitate the calculation of the last convolution we note that by Lemma 2.3 

9 * L,, = i$ * (k - k”) + 0 f p-“/a log 1)S”j’ (C)f 

where the integral8 are taken in the meaning of the Cauchy principal value. 
We denote the first and second terms in the right-hand part by 1, andJ,, respectively. 

Omitting intervening calculatia, we note that 

where C, is a certain real constant. Calculations yield 

Jr (2) = 0 (r-“2) 

From these relationships and from (3.17) follows that 

o,~,R~ al 

r 
.@tix-rJ y- 0 (r-‘f? log r) 

Proposition 5.1. Function Q), (2) satisfies relationship 

(5.5) 
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Ql (z) = J+&(z) f 0 I +/lSE g-‘/,iC (2) $_ r-‘/&C g-*/c+t (z)] 

Proof. By virtue of(5.3) 

a- h W)) + L1= a [(ttlkl) * L2l + (2%) * Lu + V@,r) * Ltl 

We substitute in the convolution (f@,) Y Lr.the righr-hand side of (5.5) for @, and, as 
the result, obtain a sum of convolutions to all of which,except one, Lemma 4.1 is apple- 
cable. 

Thus 

h. (t@s) * JL = Mm bIz-l) r (z)l * JL (S - z) + A*Lsr (Q + 0 [p+--“‘(5) log P1 

By Proposition 3.3 
4 (4 = 0 (r-y 

Hence by Lemma 2.2 
01. (z) = 0 [ Irl+c o+y z)] 

and consequently by Lemma 4.1 

h VQ) * Ln = A,L,, (5) + 0 [p-“Nr*~~+*(?J] 

Finally, by virtue of (5.4) and Lemma 4.1 

h V@s) * J&l = &L*,( 5) + 0 Ip-Q+c cT’/.+r (C)l 

Sincei IIm &z-l) t (z)l *L,, (6 - 2) = Im [1/s&sz’2 * La (t - Z)l 

and it is not difficult to estimate the last convolution and find it to be 0 (r-* log r), 
the proposition is proved. 

It follows from this that the principal term of function ~(1) differs from that of Q>, 
by a value of the form of AL,,, and is consequently determined by expression (5.5) but 
with a certain constant other than a,* . We shall denote this new cOnstam also by a,*, 
since this will not result in any confusion_ 

6. Let us consider the question of differentiation of the derived asymptotic formulas. 
This question reduces specifically to the evaluation of the residue of the asymptotic 
formulas for ti / dz and a~ ! & when the principal terms are obtained by differen- 
tiation of the principal terms of function w. We note that for small jzi 

k (z) = -+..., F(z)=-;+..-. 
where dots denote terms containing’only a logarithmic singularity. From this by virtue 
of known theorems follows that function 

q1(6)=-$ _cp(z)k(6-z)dzdy s (6.1). 

satisfies the inequality 

if 

A similar statement is, also,valid for integrals with kernel k+ (z). 
To derive the asymptotics of function w (I; + h) - W (E) it would be necessary to 

repeat the reasoning of Sects. 3 and 5. However,since that reasoning is independent of 
the specific form of kernels L Im (z), it will remain valid also for kernels J&, (Z + h)- 
- L,, (z) , except that now the kernels satisfy inequality 
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1 Lh (2 + h) - 4, (2) I< C 1 h 1 [ rsa~m%p(+r) -j- (hr)-a] 

and not inequality (3.1). when 
lrI>i 

It will be readily seen that the ancfllary Lemmas of Sect. 2 and Lemma 4.1 remain 
valid, if one takes into consideration the remark about function (6. I), Hence 

w(E+k)--w(f;)etot(t+A)-~~(5)-CO([hJlog~P-l’”) (64 
If the Lipschitz condition 

I q, Pi) - ‘p w I G Me 1% - 21 I” 

is satisfied by functionq, (z) in (6.1). then rpr (g) is differentiable, and 

A similar statement is also valid for integrais with kernel k*. With the use of the esti- 
mate (6.2) we can differentiate formula (3.9) and repeat the subsequent reasoning. As 
the result we obtain 

aw G) _ = &J&L + O(p-%+a >, 
% 

“$ = z!$ -J- 0 (p-‘/4”) (G.3) 

Prom this ensue the following propositions. 
Proposition 6.1. If conditions (1. I) and (i. 3) are satisfied, vortex w satisfies 

inequality 1 0 (ff 1 G CT’ f6.4 

Proof. since o(C) = 2 a~/& (6.4) follows by virtue of (6.3). 
Let us consider the qtition of determining constants all,, a, and bl in the asymptotic 

formula. These are not independent owing to certain interrelationships imposed on them 
by the continuity equation. By virtue of (6.3),(3.19) and (5.5) 

and, therefore, the continuity equation implies 

Rear = l/a alj, 

Proposition 6.2. The relationship 

Im&,= -2 
$J-zxn 

is valid. 
pro o f. The continuity equation and conditions along the body imply 

Re 
s 

w(z)& ==O 
C 

(6.5) 

(6.6) 

whatever the closed contour c in region G. 
Let 

Hence for R + 00 we have (6.6). 
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By virtue of (3.19). (5.5) and (6.5) we have the asymptotic formula 

w (z) rz ia,/, (1 + h Re bi F 
) 

r-‘/t eA(x-r) + 

1 

+ al -$- ewx++ + - ia?,, q2 [h(r_s)p-%zs+ 

0 

where 

+ 11% e-y + s2 (2) 

Re Q (2) s 0 (r’l* + r’l~+~ c?/:+~ (z)] 

1111 Q (2) s 0 [ r’ll log r + r++c G-Q++ (2) + +*+c 5‘“‘+L (2) I 
Summarizing.the obtained results, we come to the theorem as follows. 
Theorem 6.1. If conditions (1.1) and (1.2) are satisfied, there exists 

(6.7) 

W3) 

for the 
complex velocity the asymptotic formula (6.7) with the residual term (6.8). 

7. Let us pass to the evaluation of the attenuation of the vortex outside rhe’trail, For 
this we shall consider relationship (1.3) as the integral equation of function 0 (Z). 

First, we shall establish an ancillary proposition, Let function rl, (z) be continuous for 
z += 0, 00 and for 0 < r < oo satisfy the inequalities 

0 < Q(z) < cJ+, O<r<l (‘4 

$(E) <. P++P) + A [r-Q4 (@I * L (1; - 4 (7.2) 
(L (2) z r-1 &x-r), A = con&) 

Proposition 7.1. Inequality (7.2) with condition (7.1) implies 

* (6) f BOp-ye~(~-P) (7.3) 
where B. and p. are suitable constants. 

Proof. Weset p=2p1+ps, pj>O, j= i, 2 , and assume that for a < A, where 
n is an integer or a half-integer, 

$ (2) < car (s + 1) e-# (p.rz) r-v (74 

This inequality is satisfied at d = 0. We shall prove that with a suitable selection of 
constant 23 it will also be satisfied for s < n -I- l/z and, consequently, for all integral 
and half-integral n. Setting v = p - 5, we introduce sets 

Noting that 

we obtain 
4 *- ~--fC-al<E--P+‘--t 

It is easy to verify that for f > 0 and m > 0, 

P 
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Hence, for a E Gk, 0 Q k < [n] - 1 

For z E Gk, 0 ( k B; [n] - i by inductive proposition 

‘4’(r) < GbBkr (k + 1) [‘/rv~r (if (k - 1)/n) + lpr” 
If ZE Gn, then 

~(z)(CrJPf (n+i)[s(i--q=) +ip 
It is readily seen that 

Hence 
*(r) <NOB” r (A + 1) (lb17 + i)-“r+ (” ) ** ‘=‘~ (7.6) 

If n < 2, we take the complement to GO for G,, and then estimate (7.6) will be valid. 
We set EA,=maxU41’, Ms’j 

Ml' 
r(n- k+:)r(k+i)Bk 

= max IW ii- k / n) + iSn” [%pl~ (i + k/n) + ilk 

(oomiW-1) 

Taking the integration interval of convolution (7.2) as the sum of intervals Ga and then 
applying in the interval over Gk the corresponding inequality, we obtain 

[r-i 9 (a)] l t (t - 2) < M, (r-l-‘) I L.1 (t - I), h (2) = r4er?(x-r)+1 

The last convolution by lemma 2.2 does not exceed 
cp-% (ltr) a-‘h Y 

@16) 
Hence by virtue of (7.2) 

9 (Q < psle' tGp) + AClM,p-’ @ (r$), Cl==CCO 

Constant C depends only on pl, pr and y. Let us find the upper limit of M,. Clearly, 
we can assume n 9 1 and k s i. It is readily seen that 

Taking this inequality into consideration and using inequalities 
,m+% ,-m J&i< r (7n + 1) < mm+‘/* e+ WG 

we obtain 
r (t8 - k + i) r (k + i) 

[HIT (i - k/ n) + i]“k[l/ap~~ (1 + (k - Q/n) + i]k < 

< r (n + w 
Q4n + v 

~‘g+)“+“‘(* _yyi+!$)-k (1 +&j-(n*l) 

But (X)*“‘(i_X)YI(~+~)-r(~+~)-(n+l)< 

n) 
)“(~i’“~_“)‘“(*+n+~_i)k(~+~)-(ntl)<~ 
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Hence 
Jf,,< 2B"I'tn +%) (p~r+l)-~ 

Consequently 
$ (5) < P-l ep (E-Pf + 2ACxB" p’ I 

( ) 
n -+ $ a-n-“I (pJ) 

If we select constant B so that 
c + 2A&@’ < &,.@‘+‘I* 

B > (2AC + (c ,’ CaBnf)* 

and apply to the first term the inequality (7.5) we obtain for s = A i- l/e the inequaiity 

(7.4). 
Thus it is sufficient to set B = 4A C, since it can be always assumed that 

eICoB"41, 2AC>1 

The validity of inequality (7.4) is thereby established for the general case. From 

(7.4) follows 
9 (5) Q Cop” min, 

[ 
p F (8 + i) - 111 (P - f) 

e'(a16) I f CePmY 0% (1~15) exp B 

From this follows (7.3). if PO = pP?B is assumed. 

Note. We can assume Pt = h = P / 3. Then 

P@ = P/24AC (7.7) 
and C = C(p) if y is fixed. 

Proposition 7.2. If the conditions of Proposition 7.1 are satisfied, then 

9 (6) <* c,p- Ye@+)(E-p! 

where E > 0 is arbitrarily small, and C, depends on A, p and a. 
Proof. The set Al of those values of m for which inequalitv 

sup fpY Q (Z;) em +9 < 00 
IfKm 

(7.8) 

is satisfied is, by Proposition 7.1, not empty,since p&M. We note that when m&EM, 
then also (0, mo] C’M. Let p” = sup m (m=Jf) 

We shall prove that P” 2 !, by contradiction. We assume P” < P . &t P* = P - P” 
and e > 0 be suf~~iently small. Clearly P” - E = m E M. We set 

$I(<) = 9 (5) em (r-r,) 

It then follows from (‘7.2) that 

$ (5) < P-1 ,(P*;tC) (r-P) $[r-‘~(~)l*~t(S-s) 

L,(z) = r-‘exp 1(P* -t E)(z. - rjl 

Condition (7.1) assumes the form 

O<~1(5)~Cc,P” 
Hence by Proposition 7.1 

and according to (7.7) we have Pm = (P* $- e)[24AC(P* -+ eff-J. since for any E > 0 
constant C(p* -I- E) < C*, hence for small E the value Pm -+ m > PO, while on the other 
hand Pm + m E M, which is absurd. Thus P” > P, Q. E. D. 

To apply Proposition 7.2 to the asymptotics of the vortex we transform (1.3). By 
Theorem 6.1 

1 f.7 (2) }< Cp , 1 u (2) f < C,r+ @--r) + &r-l 
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Applying again Proposition 6.1 and the readily estabiished inequalities 

Passing to elliptic coordinates, as was done in the proof of Lemma 2.3, it can be easily 
shown that 

(7.Pcl) 
[I-“~ I?~‘““] * r, (r; - 2) < c [ 3 ( +- + 1 - f ) + Qq &C-;-p) 

Hence from (1.4). (7.9) and (7.10) follows 

It =h-e, L(z) = e>O 
Here. Ls is an arbitrary quantity. Assuming 

$(z)=C;~ /o(z)/, when ZEG tl, = 0, when zES 

we obtain for 9 (z) the inequality (7.Q and by virtue of (6.4) 

4 (2) < Cry 9 T<f 

Thus from Proposition 7.2 we obtain the following fundamental inequality 

10 (2) I< $- e(X-cXJr-r) (7.11) 

where a > 0 is arbitrary and small. and x < 1. C-ant 6’ depends on h, e and x. 

& Let us de&e more precisely the asymptotic formula for the vortex, Two terms 
of the asymptotics of function o (2) can be obtained from (6.3), but with residue 
0 (p-‘f*+*) which we know must exponentially decrease outside the trail. To avoid 
lengthy calculations we shall consider the simpleat case in which only the first term of 
the asymptotics is retained. 

be satisfied in addition to the conditions of Lemma 4.1. 
Then J (5) = A& (5) + 0 (Q (6) @+f) (%I < EL) (8. $1 

Here s), (5) is given by expression (4.1) in which yl = ‘1, and Ys = 1. 
Proof of Lemma 8.1 is an exact repetition of that of Lemma 4.1. 
From (1.6). (7.10) we have 

Applying Lemma 8.1 by virtue of (7.11) and taking into accouut that 
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- - lo-- 1 1 4, &E-P) + 0 (p-V: &E-P)) 
P 

0 (5) = A -&W-P) + &E-P) 0 
P ( 

k$+ + p-%-x 
> 

we obtain 

This shows that X = 1 can be assumed in (7.11). Thus, repeating the reasoning for 
x = 1 and taking into account that by virtue of (6.3) A = h&, we find 

w (t) = ha,,, -$ ewE-P) + ewE+) 0 
( > 

J$+ (8.2) 

Theorem 8.1. In conditions defined by Theorem 7.1 there exists relationship 

(8.2) in which p is any quantity smaHer than h. 
Repeating literally the reasoning of Sect. 6. we obtain for &&i and 80 /aF, the 

following asymptotic formulas : 
ao ,=-$$+eKt-p)O (A!$?_), _!&_= 
al, 

% + eMc-P) 0 (q) (8.3) 

where o r is the principal term in (8.2). 

9, Let X and Y be the projections of the force acting on the body on axes x and 9 . 
Simple calculations yield X + iY = - kipb, (9.1) 

We denote by r the limit of velocity circulation along the contour C when it tends 

to 00. It is easily shown that 
Rebl= -&-I’ (9.2) 

Theorem 9.1. In conditions of Theorem 6.1 lift is defined by formula 

Y =-ppu,r (9.3) 

This theorem is an extention of the Zhukovskii (Joukowsky) theorem to the case of a 
viscous fluid. This theorem was obtained by FiIon already in 1926, although without a 

rigorous proof. 
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