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The flow of a plane stream of incompressible viscous fluid past a body is considered,
and the velocity field far away from the body is analyzed, Asymptotic formulas are
derived for the vortex and the velocity field,

The problem of the asymptotic behavior of a viscous fluid has been known for a long
time and had atwacted the attention of many researchers. Numerous works of Finn and
his disciples are-known, Filon [1, 2] had examined the plane case by using the Oseen
approximation, He obtained a divergent integral for the moment acting on the body,
which is known as Filon's "paradox”. Investigations by Goldstein [3, 4], Imai [5], Smith
[6}, and Finn and Smith [7] followed, The subject of the present paper arose in the course
of development of an algorithm for the numerical solution of the problem of flow of a
viscous fluid past a circular cylinder,

1, Let S be a cross section of the body and € ~ a smooth jordan curve - the boundary
of S; the complement of § to the whole plane will be denoted By @, Let (Z, y) be
rectangular coordinates with origin within §, Let 1 4 u, v be dimensionless velocity
components, p the dimensionless pressure, p the density, p = 1. We denote by w the
complex velocity w = v + iu, by @ the vortex, @ = dv/ dz — du/dy, and by
R the Reynolds number with A = R/2. We shall consider those solutions of the flow
problem which satisfy conditions

we (6N @), §m“dzdy<oo (1.4)
[wl=0¢")  (=VZ+y) (1.2)

where & > 0 is an arbitrarily small quantity, We set
— =3 7 -a— —3 i —a—- i -—a-;
- z=z+8y, L[=F+in, = (az+‘ay.)
lo(2) = =Ko (hr), mqy(z) = (2/r)e*=K, (Ar), L 2) =me(z)—1/Az

where K (j = 0,1) is the MacDon4ld function, Using these conditions it can be easily
shown that

0@ =jo+ 5 Jo[u RG22 402G Naeay  (1.3)
G
; *51—3[ azo<c-z>+2xp‘ilo_£_—z>]d (1.4)

where 7 is the outward normal to 84S = C and § is the length of arc along (.
For the convolution of the two functions f and I we introduce the following notation

(F) (D) = f*z———S F(2)1 (¢~ z)dzdy
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Wwith this notation

where w(L) = f(2) -+ Yshi (w? » k + wisk*) (1.5)

k(2) =3 lo(2), K*(2) = o-lo* (2), f(C)*“"';‘:‘;CS{lo(g‘”‘z)x

X [(2AP + i0)dz + dz] — Lo* (§ — 2) [(2hp — i) dz + d2]} + g (§) (1.6)
and g ({) is regular in region G,

2. let
r~% oxp [p (z —r)] + 8r73, r>1

L(Z)w {r-d.’ 0<a0<2' r<i
where § = 1 or 0. We set
o(z) = (flogr|+ ¥ (r+1)%,8, 30, B>0, J(@) = (e+L)(D)
The following Lemmas provide an estimate of the convolution J ({), and are adduced
without proof owing to space limitation,
Lemma 2.1, If P11, a4 B > ¥, then
J(£)<Co(L)[p">As,p (8) + dlogp + Av,a (1)) (2.2)
p=1f| Aas(})=(log p)&“ﬁ, 8gp — is the Kroneker delta,

(2.1)

we set 6(z2)=r—z-4+1

Lemma 2,2, If {<B<<2, «a4B8>3%, then
T (5) < Co (b} [p% 2 + Av,a(p) ~+ pr-e-Prs'0-8) ({) Agg (p) + Slogpl (2.3)

Constant ( depends on y and a, f§,

Let
r"'ﬂg”’(:'r” r > 1

= (1 1)5
Y (2) = (logr 4 1) {r‘“ﬂ‘, Oches, ret (2.4)

Let us consider convolution

J1 @) =@*L) ()

Lemma 2,3, Inequality
Ji(8) < C {exp [B(E — p)] [p¥r*P + 0 An, (L) + p7PAu,o (D)1 +

+ 8p~fa~":(3) log p + 8p*Au, 3 (p)} (log p)* (2.5)
is valid,

8, Let f (z) be continuous for | z| > R and lim f (z) = O when | z | — oo.
For | z|>> R function ® (r) = max | f(2) | is determined at | z| > r. We shall

call the expression . i 1
lim (- Tog 37y
=0

the power order of decrease of function f (z) and denote it by & = & (f). Assumption
(1.2) is written in the form 8 (w) > 1/,. We set

k(2) — k* (2) = — Ly (2) — iLys (9)

k(2) + k* (2) = — il (2) + Lna(2)
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Using the asymptotic formulas for Bessel functions, we obtain the estimate
(Ar) Um0 L )2, i Ar > (3.1)

[L;m(z)[<C?&{{h)_1’ if ar<t

where p /A > 8 > 0, and 9, is an absolute constant, while C is a constant dependent
on {#, only, Values q,,, are
ay =y =2, ay=1, a,=2 (3.2}
Proposition 3.1, If 8 (w) <</, then & (v) > 26 (w).
Proof. From (1.5) follows that

o) = Ref(L) + Awu) = Ly + YaA(v? — u?) # Lyg (3.3
Taking into consideration estimates (3,1) amd relationships (3, 2), by Lemma 2,1 we
have »() =Ref (@) +0 (™) 64

where ¢ > 0 is arbitrarily small, Since Ref(}) = O(p~!), we have from the last inequa-

lity 8(r) > 28(w), Q.E. D,

Proposition 3,2, The estimate § (u) > Y/, is yalid,

Proof. By formula (1.5)

u(f) = Imf(§) + Alvu) * Ly; -+ Yoh(v? — u?) & Ly, (3.5)
When §(w) + 6(v) = d(x) + 6(v) « 1, then by Lemma 2,1
uQe=Imf)+0 (P‘/z-ﬁ (U5 (o)+e P-c& (u}ﬂ}-

where g >0 is arbitrarily small, Since &(v) 3 206(w) > 1/, it follows from this that
8(u) = 6(lm f). Hence 8(x) > Y, which contradicts our assumption that d(w) + o) < 1.
Thus, 8(u) -+ 8(v) > 1, and by Lemma 2,2

u(l)=1Imf({)+ O[p~ /IS WHB()te o j=2b (upte o ~tfam (uhey 3.6).
From this follows inequality §(u) > ¥, Q.E. D,
Using the asymptotic formulas for Bessel functions, we obtain

1@ =g+ 00, 0= ()" {(pdy—3rdz) @)

The derived integral differs from (the expression for) drag by a factor only, hence it
is not zero, A rigorous proof of this was given by Smith in [B].
Thus & (u) = 8 (W) = Y/,, and setting

u),/.(;) £ ia,/,p"/re)‘(ﬁ-ﬂ)
by virtue of (3, 4) and (3, 6) we obtain

v (§)=0(p*), u(g) = Imwy, (L) + O (p=¥**) (3.8)

Relationship (3, B) will be further refined by a rational application of the iteration
process to the nonlinear equation (1, 5), As the result we obtain a few of the first terms
of asymptotics of w,differing by their order of decrease, The orders of decrease form a
series of numbers /,, 1, 3/, 2, ... In progressing through this series, terms containing
logarithmic factors will appear in abundance in the asymptotics,

The sum of terms whose order of decrease does not exceed @ will be denoted by we
and it will be assumed that W = w, - WD

Proposition 3,3, Estimate & (w)) > 1 is valid,
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Proof, We set i
WD v e jy W 2y - ), f = Py, + 19 fy, =y,

Then relationship (1, 5) yields

wlt) == {0 1y Ak (0] w (e 4 5°) + 2 (00 D) 0 & — 2 (0, 0Py 0 k®
+ (w3 o k 4 (w12 o k*) (3.9)

We denote the sum of the first two terms in the right-hand side of (3, 9) by AW, the
sum of the two next following terms by /, and the sum of the last two terms by j,, We

apply Lemma 2, 3 to j, and obtain 1 o= =& (wy, ) » (k + £7) + M (wy,, 0) o (k — k°)
By virtue of (3.1),(3.2), and the first of mfat{ommPs (3.8)
=1y, 0) s Lu+0 [ 475 Buy=1) (340
Let us assume that y < 1. Similarly
A (uy, v) o Loy = O [p+e el (R-9) . o ='irte 5=Ya (1] (3.41)
where 9) with & < 1 can be taken for p. We have
ja = — A (vufD) o (5 — k*) + Y2 hi [03 — (] » (k + &°)
Applying Lemma 2,2, we obtain
ja = ih (vu®y o Ly 4 O [(pTHYamI*e g2 g=ivdes) G dves) () o pAVHe] (3,42

Similarly

A (vu(l’) sl =0 [p'-(‘/ﬂ"t)‘l"l + p~Mr(1tv)re Save (£)] (3.13)
By Lemma 2,3 .
wd o (k+ k) =017 () (3.44)

Since §(f(1)) > 1, from the adduced estimates follows the inequality y>min[1, 1/,
(1411, which contradicts the assumption of 7<{1. Hence, v >» 1, Q,E, D,

The resuits presented in the form of propositions (3, 1)—(3. 3) appear in the paper by
Smith [6], but his proof differs from that given here,

From (3,10) and (3.12) we have

v = Ro A + O [p=h+earine (L)] (3.15)

Hence, if the asymptotics of convolution (3, 14) is found, it becomes possible to deter-
mine the principal term of the asymptotics of function v, The computation of the asymp-
totics of such integrals is a somewhat complicated and precise ptocess, Here we present
only the final results, By virtue of definition of functions & and k*

o (L — Omo ({ — 2 - -
o+ i#) = o (@) (BB 4 TR 4 At ()0 (§ — )

The integrals are taken here in the meaning of the Cauchy principal value, We denote
the first and second terms in the right-hand side (of this equation) by [y, and Jy, , respec-
tively, We have

Iy, (2) = s "’ o M) {[zm r—a)+ + (x (r—z)— ..i..)] S eMr-enddy —

—5(i+ —y—) e*<==-'>} T [Cay 4 Ca + Ca(r — 2)] 4 4 O (re=n)

where C,;, C, and C, are certain constants whose exact value is unessential in this con-
text, Prior to adducing the formula for Ji, we shall make the following stipulations,



The asymptotic behavior of a vortex 873

We cut plane z along the half-axisz > 0 (inside the traill),
Function (--z}"* is single-valued in the slit plane, and we take that branch of the
root which is positive for z << (. We have

5 —z)
Jy,(2) = — A-lad, [._TE‘.. et - +( ;}_L S -t ;t.:l +2 Clz¥  (t=2A(r—2)

k—1

and the series converges in the neighborhood of point z = oo. It is readily seen that,
as long as z == 0, function ®
(_ z)"fs S e-t
0

and all of its derivatives are not subject to discontinuities along the slit,
From these expressions follows that

wh, » (k + k*) = { [Ztk(r-—-x —[———(k(r-—-z)-—-—)],\(
1 T
27} \ g=h{r-x)? (— 2" 4 dt .
XeN )§€)‘( )dv 2 X§€‘VE}+ (ClyTCQ“f*Cs(r""x))X
X+ 2 Tk 4 0 (rreme) (3.16)

Hence

Reh® (z) = Re ( 0y Sen 4 —”i) + 0 (%)

Im A (z) = Im ( o :/ eMen o B bx ) _

1

— gy e {eremme dy 4 0 () (3.47)

0

Yoeren o 2 ) (3.18)

M‘/z

Stipulating
V1(z)=Re (g,
from (3.15) and (3,17) we obtain
v = Vi(2) 4 O [rh + r-e g4 (z)) (3.19)

4, Let L (z) = LW (z) 4 L® (z) be one of the functions Ly with L) (z) being
that of the L (z) components which exponentially decreases outside the trail, Let @ (z)

satisfy inequality [9(2)] < (|logr|+ 1)% r86-x(z)

We set ¥, = min (y, !/,) and ¥, = min (y, 1) and denote by % an arbirary quan-
tity in the interval (0, oo), We introduce functions {

AW = Ag_yy + AsyBpoviar AP = Agy28piv,s
A® = Agy;1Apoyya + Azv,2Bp-von AW = Ay 1Bpiv,s

z

We set
£ (3) = p~@o (§) [AWp1+th (B=va) 6% (1-B=Y) (L) - A@P 15~ (L) -+ Agy,y pHT06~*()] +
+ A® logh p p=e=ths= (L) 4 (AW + log p) o (£) 5™ ({) (4.1)
Lemma 4,1, If 2<<f + 9, < 3, then

(@) = (e=L) () = L(}) —:%‘(S;(P (z)dzdy + O (2 (£))
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Proof of this Lemma is omitted for the same reasons as given for Lemmas 2,1~2,3,

§, Let us determine the first order terms of the asymptotics of function u ({) by ex-
tending the reasoning of Sect, 3, Using formula (3,19) we transform the first term in
formula {3,11) and then apply Lemma 4,1, We have

jr =i (Uy,V 1) # Lay + ihAoLay + O [p=Irte s~ ([)] (5.1)
We carnry out a similar operation on J,. Then
Ja = iA (fu®) # Lyy + iMA Loy + O [pfert g=Yere (L) + ol 5~ (0)] (5.2)
t(£) = Re byl
Substituting (5. 1) and (5,2) into (3, 9) and taking the imaginary part, we obtain
) = @Oy + O, 4D, Dy = Im A + A4, Ly, + A (us, V) » Ly

D, = A (tu®) * Ly (4, = 4, + 4,) (5.3)
with O,— the sum of residual terms expressed by
@, = O [phrtgriee 4 pireg it (5.4)
Assuming
PO = (@) (@ Fmeen - )
we obtain

(s, Vy) * Lyy = Re ( = L)
To facilitate the calculation of the last convolution we note that by Lemma 2,3

P #Ly = i » (k— k*) + O [p~Flog ps~ (3)]

Oy (-  Im(E—2) v, 1
Wik =9 oazz T )‘"’ A L

where the integrals are taken in the meaning of the Cauchy principal value,
We denote the first and second terms in the right-hand part by [, andJ,, respectively,
Omitting intervening calculations, we note that

I,(2) = —iay, by yl g AT g, 3D [2(1 —

1
— %)Se"‘"’”’ ds — -%;~ eMx-ny 4 iC, r—?,’; eMa=n) L O (r-*hlog )
9
where C, is a certain real constant, Calculations yield
Jo(e) =0 (r*)
From these relationships and from (3 17) follows that

« Y b
el(x—r) Im ay —;3—/;- phlx-r) + -—;—-—) -+

D, (2) == May, Re b1

1
+ 2ay,(Reay, —a ) = A {r M =2 o "‘“”S e-xr=)8t dg
0
c,/,Ra a1

— i M= 4 O (- log T) (3.3)

Proposition 5.1. Function @, (z) satisfies relationship
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@, (2) = ALy (2) + O [re g4t (z) o- r=iett g=iese (z)]

Proof, By virtue of (5, 3)

@1 = A (tu) & Loz = A [({Do) * Laa + (¢D1) # L + (¢Ds)  Lm]

We substitute in the convolution (1®¢) # Lz the righr-hand side of (5. 5) for @, and, as
the result, obtain a sum of convolutions to all of which,except one, Lemma 4,1 is appli-
cable,

Thus
A (@) % Lyy = [(Im byz-1) £ (z)] & Loy (§ — 2) + Aslaa (§) + O [p~*4o~" (£) log p]

By Proposition 3,3

uy (2) = 0 (i)
Hence by Lemma 2,2
D, (2) = O [r** a74(2)]
and consequently by Lemma 4,1
A (t®;) % Loy = ALy () + O [p~"* e ov*(T)]
Finally, by virtue of (5. 4) and Lemma 4.1

A (t®y) * Ly = AgLy(L) + O [p~he o7 ([)]

[Im (b,27%) ¢ (z)] % Ly (§ — 2) = Im [Yhy22"% % Ly (§ — 2)]

and it is not difficult to estimate the last convolution and find it to be O (r~* log 1),
the proposition is proved,

It follows from this that the principal term of function uf) differs from that of @,
by a value of the form of 4L,,, and is consequently determined by expression (5, 5) but
with a certain constant other than a,*, We shall denote this new constant also by a,*,
since this will not result in any confusion,

Since

6. Let us consider the question of differentiation of the derived asymptotic formulas,
This question reduces specifically to the evaluation of the residue of the asymptotic
formulas for 6w / 9z and dw / 9z when the principal terms are obtained by differen-
tiation of the principal terms of function w. We note that for small |z

k(z)=——21—;-+..., ) ==L +.

where dots denote terms containing'only a logarithmic singularity, From this by virtue
of known theorems follows that function

NGEE l“S_qcp(zﬂc(: — 2)dady (6.1)

satisfies the inequality 1
|21 @ + 2) — ¢2(D) | <Cmax ||| h|log 7

|hl<<t
A similar statement s, also, valid for integrals with kernel k* (z).

To derive the asymptotics of function w ({ + k) — w ({) it would be necessary to
repeat the reasoning of Sects, 3 and 5. However,since that reasoning is independent of
the specific form of kernels L;,, (z), it will remain valid also for kemels Lym (z + h)—
— Ly (2),, except that now the kernels satisfy inequality

if
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[ Lim (2 + k) — Lim (2) | < C | h| [ F~®im="agtx=r) L (Ar)-8]
and not inequality (3, 1), when
[z]>1

It will be readily seen that the ancillary Lemmas of Sect, 2 and Lemma 4.1 remain
valid, if one takes into consideration the remark about function (6.1). Hence

W@+ B —wd) = v €+ h)—w @)+ O(lh|log irp)  (8.2)
1f the Lipschitz condition
(9 (21) — @ (20) [ S M| 2y — 25|
is satisfied by functiong (2) in(6.1),then g, (§) is differentiable, and

3?1 l { aqu ‘ C
— max M
- + | sl jol+ My)

A similar statement is also valid for integrais with kernel £*. With the use of the esti-
mate (6, 2) we can differentiate formula (3, 9) and repeat the subsequent reasoning, As
the result we obtain

-9%.&5-‘1 = ﬁ”-gfé—Q +0p ), =T L0 (6.9)
From this ensue the following propositions,
Proposition 6,1, If conditions (1,1) and (1. 3) are satisfied, vortex ¢ satisfies
inequality j o () 1 < Cp™! (6.4)
Proof, Since a(f) = 2 du/dL, (6, 4) follows by virtue of (6. 3).
Let us consider the question of determining constants as;,, @, and b, in the asymptotic
formula, These are not independent owing to certain interrelstionships imposed on them
by the continuity equation, By virtue of (6, 3),(3.19) and (5, 5)

a, rfx—~r)
-—aa—:» =2 -‘}é—.’ ( . ..&;.. ) .E.....’_‘.'___{,_ 0 (r"’/rl'&)

= r t 3

M 2 Ax=r)

%- = Re a, ( — %&__) 4 r.}’ ‘5_ 0 (r-’/t‘l‘t)
and, therefore, the continuity equation implies
Real = 1/2 a‘/' (6-5)
Proposition 6,2, The relationship
Gy,

is valid,
Proof, The continuity equation and conditions along the body imply
Re S w(z)dz =0

c
whatever the closed contour C in region G.
t
e C={z:|zl = R} R o
We then obtain x

Re [a‘av. § AR © 00 ¥ 4 21ita | + 0 (R =0

Tl

Hence for R — oo we have (8, 6).
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By virtue of (3.19), (5, 5) and (6. 5) we have the asymptotic formula
w (Z) = ia‘/. (1 -+ A Re bl _‘y_l;)}_f_) 2 pMx=1) +

)»(:x—r)

1
(A(r—2) S e M=) ds |
0

+ Y, &) + Q (2) 6.7)

~+ay -’7‘ eMx-T) + b za‘/

where Re Q (z) = Q[+ e g=ste (z)]

Im Q (2) = O [rhlog r + r/ee g~leb (z) + 1% st (z)] (6.8)
Summarizing.the obtained results, we come to the theorem as follows.
Theorem 6,1, If conditions (1,1) and (1.2) are satisfied, there exists for the
complex velocity the asymptotic formula (6. 7) with the residual term (6. 8),

7. Let us pass to the evaluation of the attenuation of the vortex outside the trail, For
this we shall consider relationship (1, 3) as the integral equation of function @ (2).
First, we shall establish an ancillary proposition, Let function v (z) be continuous for
2= 0, 00 and for 0 < r << co satisfy the inequalities

0<Y(a) < Co, 0<r<t (7.1)
P(§) < pleE + A [y (2)] » L(L —2) (7.2)

(L(z) = r1eM™ T, 4 = const)

Proposition 7,1, Inequality (7,2) with condition (7,1) implies
b (§) << Bopemts-») (1.3)
where B and pare suitable constants,
Proof, Weset = 2u; + My, pj >0, j =1, 2, and assume that for s < n, where
r is an integer or a half-integer,
P (2) K CoBT (s 4+ 1) 6% (z) r™” (7:4)
This inequality is satisfied at s = 0. We shall prove that with a suitable selection of
constant B it will also be satisfied for s < » <+ Y2 and, consequently, for all integral
and half-integral n. Setting T = p — {, we introduce sets

Go={z'r-—-z<ir} Gp= {z 1:(2+[n]2:‘)<r—=} (7.5)
G ={z 1-(2+ - )<r—z<‘r(z+zn)}, k=12, [8]—1

Noting that
gE—r—[t—d<E—p+r—z
we obtain
et E2=T=2)  ha (B-x-{ T2 ) o= [1(k/m)]
1€6k, 0k n]—1
It is easy to verify that for ¢ >0 and m >0,

tm
> TmED
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Hence,for : &Gy, 0 Sk S [n] — 1

- C(n—Fk+41)

B (B-x=|{-2]) o it (E-x~|{-2])

’ < fore (4 — e/ m) + AT
For z &Gk, 0 < k  [n] — 1 by inductive proposition

¥ (2) < CoB'T (k + 1) [Ya v (4 + (kb — L)/m) + 4T+
If z&6G,, then

$(2) K CoB™T (n 4+ 1) [1.' (1 -i%——l—]—) + 1] Y

It is readily seen that

[p.u (1 - 1‘-’-1-[2'-',3—";1—) + 1]'" < (1 - -})‘" @t + 9™

W (2) <4CoB" T (n 4 1) (e + )7 (0> 3, 2660 (1.6)

If n < 2, we take the complement to Gy for G,, and then estimate (7. 6) will be valid
We set

Hence

Mnﬁm{Ml.y M"}

Mt = T(n—k-+1)T (k+41)B*
O A —k/m) AT (Yaprs (4 + ki) + 41
F(n+4+1)
My® = 4B" (—917 e
Taking the integration interval of convolution (7,2) as the sum of intervals Gg and then
applying in the interval over G, the corresponding inequality, we obtain
Y@l LE—<Mn FT s L —2),

The last convolution by Lemma 2,2 does not exceed

o<k€[n}—1)

L1 (z) = rhgta (F-N)*1
Co~ ") 5="h Y (1)
Hence by virtue of (7.2)

PO < o et &P L AC\Mp Y 57 (ual),  C1=CCo

Constant C depends only on py, s and y. Let us find the upper limit of M,. Clearly,
we can assume n 3> 1 and k 3 1.1t is readily seen that

k n-k Mt k k\n-k /14 —
e
Taking this inequality into consideration and using inequalities

m™ o™ VIR L T (m+1) < m™" 2 ¢™ YV ne
we obtain
Tin—k4+ )T (k4+1) <
(T (A —k/n) + 41 e par (4 (k — yin) +1]F

< v e

But <%)k+‘l;(i _ %)‘/x (_} + k;ti)-k (1 R

i
2n
<(mbem) (&) (=2 (=) () T

) (n+1)
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Hence

Mp<2B"T (n 4+ %) (ur + )™
Consequently 3
P <p et P L 240,8%T ( -+ 7) 6™V (aE)

If we select constant 2 so that
e + 2A401B™ < Co B
B> (24C 4 (e/ CoB™)*

and apply to the first term the inequality (7, 5) we obtain for s = » -+ ¥z the inequality

(7.4),
Thus it is sufficient to set B = 44(, since it can be always assumed that

e/CoB™ €1, 24C>1
The validity of inequality (7, 4) is thereby established for the general case, From

(7. 4) follows Brs 1 _ —
¥ (8) < Cop™ min, [-;;éag;—):l < Cap™ 6% (i) exp __EL(';E___Q
From this follows (7, 3), if Me = u1/2B is assumed,
Note, We can assume My = j, = p /3. Then
wo = u/244C (1.7)

and ¢ = C(u) if v is fixed,
Proposition 7.2, Ifthe conditions of Proposition 7,1 are satisfied, then
P(£) < Cep~Tetbt)E-)
where & > ( is arbiwrarily small, and C, depends on 4, p and .
Proof, The set M of those values of m for which inequality
sup [pT ()€™ (-2 < o0 (1.8}
181<e0
is satisfied is, by Proposition 7,1, not empty, since p,cM. We note that when m,&EM,

then also (0, mg] C' M. L€' po—supm  (men)

We shall prove that p° 2> 1 by contradiction, We assume p°® < p . Letp* = p— §°
and & > 0 be sufficiently small, Clearly p* — e = me M. We set

V@) =p() em D
It then follows from (7, 2) that
Y1 () < pmt PV GO g (1T (5)] # Ly (L — 2)
Ly(z) = rtexp [(u* -+ e)(z — 7]
Condition (7,1) assumes the form
0P (Q)<Cme™
Hence by Proposition 7,1
Y, Q)< B, 07" exp b, (E—p)]
and according to (7. 7) we have p,, = (u* + e)[244C(p* + &)™, Since for any ¢ > 0
constant C(u* + &) < C*, hence for small ¢ the value p,, + m > p°, while on the other
hand p,, + m & M, which is absurd, Thus p° > 4, Q,E, D, ‘
To apply Proposition 7,2 to the asymptotics of the vortex we transform (1, 3), By

Th 6.
eorem 6,1 (v (2) << Cyr3, | u(z) | < Cartred@n) o Cort
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Applying again Proposition 6,1 and the readily established inequalities
az,,(z; o Yr4+t |2 . r41
‘ A iez(x ) + ;o;z) §<(,2 ll’l'! oA x-r) _K’_’_rj:_, (1.9)

we obtain

0@ 1<lol+ 40 (12 )¢ Lo @ —2) + Gy heden 10 LG —2)
e L

Passing to elliptic coordinates, as was done in the proof of Lemma 2, 3, it can be easily
shown that (7.10)

[rs @21 ,,,Ll(c__z)<(/[ t;g)}:‘i ( _5_:__ +1___§__) +*_}%‘.}eﬁ(&—o)

Hence from (1.4), (7. 9) and (7.10) follows
WE~p)
[0@I<C 5+ 4 [ 2O ] p g —2)

p=>Ar-—g, L(z) == -é-ev»(x-r), e>0
Here. & is an arbitrary quantity, Assuming
Y(z) = C;_l |w(z)|, when :&G Y =0, when :ES
we obtain for 1 (z) the inequality (7,2), and by virtue of (6.4)
v<cr, <t
Thus from Proposition 7.2 we obtain the following fundamental inequality
|0(2) | < <5 e (7.49)

where & > 0 is arbitrary and small, and % << 1. Constant C depends on A, £ and %.

*

}ek(w), Liz) = :'_/’_:i“_i_ { — 2| per

8, Let us define more precisely the asymptotic formula for the vortex, Two terms
of the asymptotics of function ® (2) can be obtained from (6, 3), but with residue
O (p~"/+*t) which we know must exponentially decrease outside the trail, To avoid
lengthy calculations we shall consider the simplest case in which only the first term of
the asymptotics is retained,

Lemma 8,1, Let

L(z)=L®(z), |@(2)| <([logr]|+ 1)fer-denz-2)

be satisfied in addition to the conditions of Lemma 4,1,

Then J(3) = AL (@) + O(Q (DY em=2)  (uy<p) (8.1)

Here Q (§) is given by expression (4,1) in which y; = Y/, and 7, = 1.
Proof of Lemma 8,1 is an exact repetition of that of Lemma 4,1,
From (1.86), (7. 10) we have

logp
(L) = Jo + _gmv%-(—c—"—ﬂ dady + O ( o eP-(-wﬂ))

(n<TH)

Applying Lemma 8,1 by virtue of (7,11) and taking into account that
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jo= 4, _;_'./_’ eME=2) | O (p~*is enlE~P))

we obtain

()=

This shows that X = 1 can be assumed in (7,11), Thus, repeating the reasoning for
% = 1 and taking into account that by virtue of (6.3) 4 = Aay,, we find

@(Q) = Ay, 0 4 e (1AL ) (8.2)

Theorem 8,1, In conditions defined by Theorem 7.1 there exists relationship
(8.2) in which u is any quantity smaller than A.

Repeating literally the reasoning of Sect. 6, we obtain for 6(0/6§ and O¢ /0y the
following asymptotic formulas:

ﬁ_ - 60)1 log p do _ do -
% +e v(an)o( L ), = a€1+ep<zp)0( )(33)

where @ ; is the principal term in (8, 2),

Y ( _10'879_ + p-‘/rx)
p'h

8, Let X and Y be the projections of the force acting on the body on axes z and /.

Simple calculations yield X + iY = — 2niph, (9.1)
We denote by T' the limit of velocity circulation along the contour ¢ when it tends
to ©0. It is easily shown that Reb, = :u T (9.2)

Theorem 9,1, In conditions of Theorem 6,1 lift is defined by formula
Y = — pue, I’ (9.3)

This theorem is an extention of the Zhukovskii (Joukowsky) theorem to the case of a
viscous fluid, This theorem was obtained by Filon already in 1926, although without 2
rigorous proof,
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